SDT가 오는 25일부터 28일까지 4일간 일산 킨텍스 전시장에서 열리는 대한민국방위산업전 ‘DX KOREA 2024’에 참가해 국방 분야의 새로운 혁신을 이끌어낼 양자 기술 기반의 카메라를 선보인다고 23일 밝혔다. 양자기술 전문성을 바탕으로 양자 응용기술 개발 및 상용화에 앞장서 오고 있는 SDT는 이번 전시회를 통해 보안 위협을 원천 차단하고 다양한 군사작전 수행을 지원하는 양자난수발생(QRNG)과 양자점(Quantum Dot) 기술 기반 카메라 솔루션을 공개한다. SDT의 QRNG 카메라 ‘NodeV’는 이미지 생성부터 영상 전송까지 전 과정을 양자난수발생 기술로 보호해 해킹을 원천적으로 차단하는 양자암호보안 IP 카메라다. QRNG 카메라 경우 높은 정보 보안성을 보유하면서 중앙 서버로 데이터를 옮길 필요 없이 현장에서 실시간으로 데이터 분석이 가능하다. 또한 순수 국내 원천기술만을 이용해 이미지 센서에서 발생한 암전류 노이즈를 양자 엔트로피의 원천으로 활용해 고속으로 순수난수를 생성해 외산 카메라의 백도어 문제와 데이터 유출 등으로 고민하는 국가기관이나 군사시설 등 높은 보안 수준이 요구되는 현장에서 사용하기 적합하다. 양자점 SWIR 카메라는 열
차세대 QLED 디스플레이, 증강현실, 센서 등 다양한 산업 적용 기대 디스플레이 패널에 쓰이는 차세대 발광소재로 양자점(Quantum dot)이 각광을 받고 있다. 특히 카드뮴이나 납과 같은 유독성 물질을 포함하지 않는 친환경 인듐 포스파이드(InP) 양자점이 주목을 받고 있으나 현재 기술로는 초고해상도 구현이 어려워 양자점 LED(QLED) 디스플레이 및 안경형 증강현실/가상현실 기기 적용에 있어 한계를 지닌다. KAIST는 신소재공학과 조힘찬 교수 연구팀이 친환경 InP 양자점의 우수한 광학적 특성을 유지하며 초고해상도 패턴을 제작하는 신기술을 개발했다고 26일 밝혔다. 현재 국제 유해물질 제한지침(RoHS, Restriction of Hazardous Substances) 규정을 만족하지 못하는 제품은 많은 나라에서 판매가 금지되므로, 최근 많은 디스플레이 기업은 환경친화적인 특성을 갖춘 InP 양자점을 디스플레이에서의 빛 방출 소재로 채택, TV 등 중대형 디스플레이에 적용하기 시작했다. 그러나 InP 양자점은 외부 환경에 매우 민감한 성질을 가지고 있어 픽셀을 만드는 패터닝 공정 적용시 소재의 광학적 특성이 크게 저하되는 단점이 있어 우수한 광학적
세계 최고 수준의 국제학술지 ‘네이쳐 나노테크놀로지(Nature Nanotechnology)’에 게재 서울대학교 공과대학은 재료공학부 이태우 교수 연구팀이 차세대 발광 소재인 금속 할라이드 페로브스카이트를 이용해 세계 최고 효율의 대면적 발광 소자를 개발했다고 17일 밝혔다. 유기원소, 금속, 할로겐 원소로 구성된 페로브스카이트 발광체는 현재 디스플레이 소재로 사용 중인 양자점(Quantum dot)이나 유기 발광 소재보다 소재 비용이 저렴하고, 색 조절의 용이성 및 색순도가 뛰어나다는 장점이 있어 기존 발광소재를 대체하는 차세대 디스플레이 소재로 각광받고 있다. 특히 페로브스카이트 발광체는 현존하는 발광체 중에서 유일하게 초고선명 텔레비전(UHD-TV) 색표준인 REC. 2020을 만족하는 고색순도 발광 소재로 차세대 디스플레이 산업을 선도할 수 있을 것으로 기대된다. 이태우 교수는 페로브스카이트 발광 소재 및 소자 분야의 세계적인 전문가로서, 2014년에 세계 최초 상온에서 구동하는 가시광 영역 다색 발광 다이오드(LED)를 개발한 이후로, 2015년에는 세계 최초로 발광 효율 8.53%의 고효율 페로브스카이트 발광 소자를 사이언스(Science)지에 보
헬로티 김진희 기자 | 우리 시각세포가 받아들이는 천연색의 순도를 실감나게 재현할 차세대 발광소재로 주목받는 양자점. 효율과 수명 향상이 상용화 과제로 남은 가운데 양자점 표면의 결함이 오히려 발광 성능 향상의 실마리가 된다는 연구결과가 나왔다. 한국연구재단은 임재훈 교수(성균관대학교), 이도창 교수(한국과학기술원) 공동 연구팀(이현준, 제 1저자)이 QLED의 무장벽(無障壁) 전하주입 현상의 원리를 규명했다고 밝혔다. QLEDs(양자점 전계발광소자, Quantum dot Light-Emitting Diodes)는 양자점에 전자(음전하)와 정공(양전하)을 직접 주입하여 빛을 내는 디스플레이. 색순도, 전력소모, 밝기 특성이 우수하여 차세대 평판 디스플레이 기술로 주목받고 있다. 각 전극을 통해 주입된 전자와 정공이 가운데 양자점에서 만나 발광하는 QLED에서 양자점 주변 전기전도층이 전자와 정공의 흐름(주입)을 방해하는 장벽으로 작용한다고 알려져 있었다. 때문에 적색 QLED는 가시광선(적색)에 해당하는 에너지인 2V를 초과하는 구동전압이 필요하다는 것이 정설이었다. 하지만 연구팀은 일부 양자점에서 전하 주입 장벽의 존재에도 불구하고 2V보다 낮은 1.5V
헬로티 김진희 기자 | 롤러블폰 등 이형(異形) 폼팩터를 가진 전자기기가 상용화 초읽기에 들어선 가운데, 국내 연구진이 기존 평면 디스플레이로는 구현하기 힘든 정보까지 표현할 수 있는 3차원 디스플레이 원천기술을 개발했다. 기초과학연구원(IBS, 원장 노도영) 나노입자 연구단 김대형 부연구단장(서울대 화학생물공학부 교수)과 현택환 단장(서울대 화학생물공학부 석좌교수) 공동연구팀은 종이처럼 자유자재로 접을 수 있는 3차원 양자점발광다이오드(QLED) 개발에 성공했다. 양자점(Quantum dot)을 발광물질로 활용하는 QLED는 기존 액정디스플레이(LCD)와 달리 백라이트 등 부피가 큰 요소가 필요 없어 훨씬 얇은 두께를 가진 디스플레이 제작이 가능하다. IBS 나노입자 연구단 역시 2015년 머리카락 두께의 약 30분의 1정도인 3μm 두께의 초박형 QLED를 개발하고, 이를 웨어러블 디스플레이의 형태로 제작한 바 있다. 이번 연구에서는 더 나아가, 종이접기를 하듯, 초박형 QLED를 원하는 형태로 자유자재로 접을 수 있게 만들었다. 이를 바탕으로 나비, 비행기, 피라미드 등 복잡한 구조를 가진 3차원 폴더블 QLED를 제작하는데 성공했다. 이를 위해 연구진
헬로티 조상록 기자 | KAIST는 물리학과 조용훈 교수 연구팀이 집속 이온빔을 이용해 반도체 피라미드 구조의 꼭짓점에 형성된 단일 양자점(퀀텀닷)의 단광자 순도를 높이는 기술을 개발하는 데 성공했다고 29일 밝혔다. 이번 연구를 통해 개발된 기술은 향후 피라미드 꼭짓점 같이 위치를 정확히 제어하여 형성된 양자 광원뿐만 아니라 고밀도 양자점 기반 양자 광원, 전기 구동 양자점 기반 양자 광원 등 다양한 양자 광소자에 활용될 수 있을 것으로 기대된다. 양자 광원은 동시에 두 개 이상의 광자를 방출하지 않고 한 개의 광자씩만 방출하는 광원으로, 양자역학의 비복제 원리(no-cloning theorem)에 의해 단일 양자 정보를 복사할 수 없다는 점에서 해킹에 대해 안전한 양자 통신에 쓰일 수 있다. 특히 반도체 기반 양자점은 칩 상에 집적할 수 있고 전기 구동 또한 가능하다는 점에서 실용성이 높은 양자 광원으로써 널리 연구되고 있다. 하지만 반도체 양자점 기반 양자 광원에는 양자점 주변 구조에서 발생하는 배경 잡음이 공존하게 되는데, 이러한 배경 잡음은 양자광으로서의 성질을 약하게 만들어 양자광이 해킹당할 가능성이 생기게 된다. 따라서 반도체 양자점을 실질적인
[헬로티] 국내 연구진이 양자점 입자의 밝기와 파장을 자유자재로 조절하는 데 성공했다. 연구진이 사용한 방식은 디스플레이 소자에 쓰이는 양자점(퀀텀닷) 입자 하나를 초미세 탐침으로 눌러 밝기와 파장을 조절하는 방식이다. 이번 연구로 더욱 얇고 소비전력도 낮은 TV 등에 쓰일 차세대 양자점 디스플레이 소자 개발에 도움이 될 것으로 기대된다. UNIST 물리학과 박경덕 교수와 성균관대 에너지과학과 정소희 교수 공동연구팀은 페로브스카이트 양자점 입자 하나가 내는 빛의 밝기와 파장을 자유자재로 조절하는 데 성공했다. ‘능동형 탐침증강 광발광 나노현미경’의 탐침으로 페로브스카이트 양자점에 높은 압력을 가해 구조적 변형을 유도함으로써 양자점 빛의 밝기와 파장을 바꾸는 기술을 썼다. 특히 해당 기술로 양자점의 밝기를 10만배 이상 밝게 만들 수 있어 초고휘도(밝기) 디스플레이에 응용할 수 있다. 양자점은 수 나노미터(nm, 10-9m)의 수준으로 작은 반도체 입자다. 스스로 특정 색의 빛을 낼 수가 있어 빛을 쏴주는 백라이트나 컬러필터가 필요가 없어 더욱 얇고 가벼운 TV, 휴대폰 액정 등을 만들 수 있다. 그러나 일단 양자점이 합성된 이후에는 밝기나 색깔 같은 발광 특
[첨단 헬로티] 양자점(Quantum dot)을 이용해 태양광을 전기로 바꾸는 ‘양자점 태양전지’의 효율을 11.53%로 높인 기술이 나왔다. 장성연 UNIST 에너지 및 화학공학부 교수팀은 ‘유기 고분자’를 소재로 적용해 양자점 태양전지의 성능을 극대화하는 ‘양자점-유기 고분자 접합 태양전지’를 개발했다. ▲ 장성연 UNIST 에너지 및 화학공학부 교수 연구팀은 무기물 반도체를 이용하는 양자점 태양전지의 일부 소재를 ‘유기 고분자’로 바꿔 ‘정공’ 전달 능력을 높였다. 태양전지는 태양광을 흡수한 물질(광활성층)이 전자(electron)과 정공(hole)을 만드는 성질을 이용한다. 전자가 광활성층에서 빠져나오면, 전자가 빠진 자리에는 마치 구멍이 생기듯 정공이 생긴다. 이때 전자와 정공이 각각 태양전지의 음극과 양극으로 이동하여 전력 생산으로 이어지는 것이다. 따라서 태양전지의 효율을 높이려면 전자-정공 쌍이 많아지고, 이들이 전극으로 잘 운반돼야 한다. 공동연구팀은 정공을 더 잘 뽑아내고 운반할 수 있도록 양자점 태양전지의 한쪽을 ‘유기 고
[첨단 헬로티] 양자점을 활용한 태양전지는 현재 상용화된 실리콘 전지보다 유연하고 가벼울 뿐만 아니라, 제조공정이 간단하다는 장점이 있다. 이러한 양자점 태양전지에 다른 유기물을 더해 성능을 극대화한 기술이 나왔다. 장성연 UNIST 에너지 및 화학공학부 교수팀은 무기나노소재인 ‘양자점(Quantum Dot)’과 ‘유기 고분자 소재’를 하나의 태양전지에 접합한 ‘양자점·유기물 하이브리드 탠덤 태양전지 하이브리드’를 개발했다. ▲ 장성연 교수(사진중앙)와 1저자인 하피드아코마 연구원(좌측 두번째) <사진 : UNIST> 유기 고분자 소재가 양자점이 잘 흡수하지 못하는 태양광 영역을 대신 흡수해, 전체 태양광 흡수를 극대화하고 전지의 효율도 높인 기술이다. 양자점은 반도체를 아주 작게 만든 물질이다. 입자 크기가 매우 작아지면서 나타나는 특이한 현상 덕분에 전지가 흡수하는 태양광 영역을 자유자재로 바꿀 수 있다. 따라서 다른 광활성층 광활성층: 태양광을 받아 전자의 흐름을 만들어내는 부분으로, 결정질 실리콘과 유기 고분자, 페로브스카이트 등의 물질이 사용된다. 기존에는 주로
[첨단 헬로티] 한국전자통신연구원(ETRI)이 양자점 발광다이오드(QLED)의 성능을 높이는 기술 개발에 성공했다고 16일 밝혔다. QLED는 자체적으로 빛을 내는 반도체 입자인 양자점을 이용한 디스플레이 기술이다. 그동안 OLED가 유기물을 이용했다면 QLED는 유기물 대신 반도체 즉, 양자점을 활용한다. 최근 자연에 가까운 색을 재현 하는 디스플레이 수요가 증가하고 있어 가장 넓은 색 영역을 제공하는 QLED 기술에 대한 관심 또한 높아지는 추세다. QLED 기술의 가장 큰 난제는 발광 층 내 전자-정공 이동 불균형 현상이다. QLED 디스플레이를 구성하는 소자는 양 전극에서 주입된 전자(electron)와 정공(hole)이 양자점에서 만나 빛을 내게 된다. 그런데 전자는 자유롭게 위아래로 잘 이동한다는 특징이 있지만, 정공의 경우 전극과 양자점 에너지 간 전달이 더뎌 이동이 힘들다. 이러한 전자-정공 불균형 문제는 양자점 발광다이오드의 성능을 떨어뜨리고 소자의 수명을 짧게 만들어 이를 해결하기 위한 연구가 필요했다. ▲ 동일 전압 조건에서 ETRI 연구진이 치환한 QLED가 기존 QLED보다 더 밝게 발광하고 있는 것을 나타낸 모습. (위쪽 줄이 기존Q
국내 연구진이 기능화된 탄소기반 양자점 단일층을 효과적으로 도입하여 유기태양전지의 안정성 및 광전 변환 효 율을 획기적으로 개선한 태양전지를 개발했다. 태양전지의 전기적인 성능과 다기능한 역할의 효율이 기존보다 약 17.8%이상 증가한 것. 연구진에 따르면, 광 에 너지 전환 효율(Power Conversion Efficiency : PEC)은 최대 10.3%의 효율을 얻었고, 안정성도 개선됐다. 유기태양전지는, 주로 생산되고 있는 실리콘계 태양전지에 비해 가공이 쉽고 재료가 다양하며 가격 또한 저렴해 경제성이 높다. 그러나 상대적으로 빛을 전기로 바꾸는 광전 변환 효율이 낮고 오래 사용할 경우 안정성이 떨어져 상용화에 어려움이 있었다. 이를 해결하기 위해 한국과학기술연구원(KIST) 전북분원 양자응용복합소재센터의 손동익 박사 연구팀은 유기태 양전지의 표면 개질 고분자 층(PEIE) 표면 위에 ‘기능화된 산화아연-그래핀 양자점’을 수 나노미터 두께인 단일층 으로 처리하여 유무기 하이브리드 구조의 유기태양전지를 개발했다. 개발된 ‘기능화된 산화아연-그래핀 양자점 단일층’은 단순한 용액공정을 통하여 쉽고 빠르게 형성할
미래창조과학부 산하 기초과학연구원(IBS)의 나노입자연구단 연구팀은 자유롭게 휘어지고 늘어나며, 해상도가 가장 높은 양자점 발광다이오드(QLED, Quantum dot Light Emitting Diode) 소자를 개발했다. 이 소자는 두께가 머리카락의 약 1/40(2.6마이크로미터)에 불과한 초박막 필름 소자로, 마음대로 구부리고 늘릴 수 있을 뿐 아니라 저전압에서도 작동하므로 사람의 피부에 부착시킨 상태에서 사용할 수 있다. 이 기술이 상용화되면 영화에서나 봤던 ‘사람 손목 피부 위의 디스플레이’가 현실화되는 것이다. 양자점 발광다이오드(LED)는 유기물로 빛을 내는 유기발광다이오드(OLED)에 비해 색 재현율, 안정성 면에서 진화한 차세대 발광소자다. 해상도는 2,460ppi로 유기발광다이오드나 액정 화면(LCD)을 사용하는 최신 스마트폰(갤럭시 S6 : 577ppi, G3 : 538ppi, 아이폰 6 : 326ppi)의 4∼7배, 고해상도(HD) TV의 42배나 높다. 비결은 양자점 나노입자를 기판에 고르게 잘 배열하는 음각 전사-인쇄 기술을 개발한 데 있다. 넓은 면적에 간단하게 적용할 수 있어 대량 생산에도 용이하다.
나노 물질 기반의 웨어러블 전자시스템을 피부에 부착할 수 있는 형태로 구현하는 기술이 개발됐다. 웨어러블 기기 산업의 새 지평을 열어 미래 사회 전반에서 핵심 역할을 할 것으로 기대되는 이번 기술은 차세대 디스플레이 소자 개발에 광범위하게 적용될 것으로 예측된다. 미래창조과학부 산하 기초과학연구원(IBS)의 나노입자연구단 연구팀이 자유롭게 휘어지고 늘어나며, 해상도는 가장 높은 양자점 발광 다이오드(QLED, Quantum dot light emitting diode) 소자를 개발했다. 두께가 머리카락의 약 40분의 1(2.6마이크로미터)에 불과한 초박막 필름 소자로, 마음대로 구부리고 늘릴 수 있을 뿐 아니라 저전압에서도 작동하기 때문에 사람의 피부에 부착한 상태에서 사용이 가능하다. 이 기술이 상용화되면 영화에서나 봐왔던 ‘사람 손목 피부 위의 디스플레이’가 현실화되는 것이다. 해상도 역시 세계 최고 수준인 2,460ppi로 유기 발광 다이오드(OLED)나 액정 화면(LCD)을 사용하는 최신 스마트폰의 4~7배, 고해상도 티브이(HD TV)의 42배나 된다. 비결은 양자점 나노 입자를 기판에 고르게 잘 배열하는 음각 전사-인쇄 기술에