지금 한국은 말 그대로 ‘러닝 전국시대’다. 주말마다 도심 속 도로가 통제되고, 번호표 단 러너들이 한꺼번에 쏟아져 나온다. 이는 통계만 봐도 금세 체감된다. 국민체육진흥공단 ‘2024 국민생활체육조사’에 따르면, 최근 국민이 1년간 참여 경험이 있는 체육 활동 가운데 ‘달리기’ 비중이 기존 0.5%에서 6.8%까지 상승했다. 이 가운데 주 1회 이상 조깅을 하는 사람만 약 330만 명으로 집계됐다. 여기에 업계와 마케팅 보고서에서는 국내 러닝 인구 전체를 2017년 500만 명 안팎에서, 1000만 명 안팎으로 추산하는 얘기까지 나온다. 국회 자료를 정리한 마라톤 매체는 국내 마라톤 대회가 코로나19 팬데믹 직후인 2020년 19회 수준에서, 2023년에는 200여 회로 급증했다고 보도한 바 있다. 불과 몇 년 전만 해도 연간 참가자 수도 1만 명이 채 안 되던 상황에서, 지금은 100만 명을 훌쩍 넘기는 시장으로 커졌다. 서울 도심을 통째로 막아 4만 명 가까운 러너가 동시에 뛰는 장면도 이제는 뉴스라기보다 계절 풍경에 가깝다. 러닝을 대하는 방식도 달라졌다. 지금 좀 뛰는 사람들은 ‘운동 좀 해야지’ 수준을 넘어서, 시즌마다 목표 대회를 찍고 워치로 각
배양 없이 1시간…비전문가도 현장에서 식중독균 진단 검사 시간·인력 부담 줄이며 식품 안전 관리 효율 높여 국내 연구진이 식품 속 주요 식중독균을 1시간 이내에 동시에 검출할 수 있는 전자동 진단 시스템을 개발하며, 식품 안전 관리 현장에 새로운 전환점을 제시했다. 기존 검사 방식 대비 검사 시간을 획기적으로 단축하면서도, 전문 인력 없이 현장에서 바로 활용할 수 있도록 자동화 수준을 끌어올린 것이 특징이다. 한국기계연구원 대경권융합연구본부 진단센서연구실 연구팀은 식품 탈리부터 핵산 전처리, 분자진단까지 전 과정을 하나의 장비에 통합한 ‘식중독 진단용 현장형 고속 전자동 통합 시스템’을 개발했다고 밝혔다. 해당 시스템은 식품의약안전처 고시에 포함된 16종의 주요 식중독균을 동시에 진단할 수 있도록 설계됐다. 기존 식중독 검사 표준법은 식품 시료에서 균을 배양해 확인하는 방식으로, 결과를 얻기까지 최소 수일에서 길게는 일주일가량이 소요된다. 분자진단 기술이 일부 도입되긴 했지만, 고가의 분석 장비와 숙련된 전문 인력이 필요해 급식시설이나 식품 제조 현장 등 실제 사고 발생 가능성이 높은 장소에서는 활용에 한계가 있었다. 이번에 개발된 시스템은 이러한 한계를 고
딥러닝 비전 소프트웨어 전문기업 뉴로클은 2019년 창립 이래 '누구나 쉽게 사용할 수 있는 AI 딥러닝 비전 검사 기술'을 목표로 국내외 제조 산업의 품질 검사 혁신을 이끌어왔다. 서울대학교·연세대학교 출신 연구진과 LG·한화 등 주요 IT 기업 출신 엔지니어들이 모여 출범한 뉴로클은 독자적인 오토딥러닝 알고리즘을 기반으로 전문 지식 없이도 고성능 비전 검사 모델을 구현할 수 있는 솔루션을 제공하고 있다. 현재 아시아·유럽 포함 36개국 이상으로 해외 시장을 확장하며 글로벌 딥러닝 비전 검사 시장의 새로운 기준을 제시하고 있는 뉴로클의 기술력과 비전에 대해 이야기를 들어봤다. 오토딥러닝 알고리즘으로 AI 비전 검사 진입장벽 낮춰 Q. 뉴로클은 어떤 기업인지 소개 부탁드립니다. A. 뉴로클은 누구나 쉽게 사용할 수 있는 AI 딥러닝 비전 검사 기술을 제공하겠다는 목표로 2019년 창립된 딥러닝 비전 소프트웨어 전문 기업입니다. 서울대학교·연세대학교 출신 연구진과 LG·한화 등 주요 IT 기업 출신의 우수한 엔지니어들이 모여 출범한 이래, 설립 6년 차인 현재까지 꾸준히 기술을 고도화하며 성장해왔습니다. 뉴로클은 딥러닝 모델 구조와 학습 파라미터를 자동으로 최
구글 제미나이(Gemini)를 비롯한 주요 상용 거대언어모델(LLM)이 효율성 향상을 위해 채택하고 있는 ‘전문가 혼합(Mixture-of-Experts, MoE)’ 구조가 새로운 보안 위협이 될 수 있다는 사실이 국내 연구진에 의해 세계 최초로 규명됐다. KAIST는 전기및전자공학부 신승원 교수와 전산학부 손수엘 교수 공동연구팀이 전문가 혼합 구조의 근본적인 보안 취약성을 악용한 공격 기법을 처음으로 제시하고, 해당 연구로 정보보안 분야 최고 권위 국제 학회인 ACSAC 2025에서 최우수논문상(Distinguished Paper Award)을 수상했다고 26일 밝혔다. MoE 구조는 하나의 대형 AI 모델 대신 여러 개의 ‘작은 전문가 AI 모델’을 두고, 입력 상황에 따라 일부 전문가만 선택적으로 호출하는 방식이다. 구글의 제미나이를 포함해 다수의 최신 LLM이 이 구조를 활용하고 있다. 연구팀은 이번 연구에서 공격자가 상용 LLM의 내부 구조에 직접 접근하지 않더라도, 단 하나의 악의적으로 조작된 ‘전문가 모델’이 오픈소스로 유통돼 혼합 구조에 포함될 경우, 전체 거대언어모델의 안전성이 심각하게 훼손될 수 있음을 실증적으로 입증했다. 정상적인 전문가들
"자, 피지컬 AI 이야기를 해보죠(OK, let’s talk about physical AI)" “범용 로보틱스의 챗GPT급 전환이 코앞입니다 (The ChatGPT moment for general robotics is just around the corner)" 2025년 1월 6일(현지시간) 미국 라스베이거스에서 열린 국제전자제품박람회(CES 2025) 키노트에서 젠슨 황(Jensen Huang) 엔비디아 최고경영책임자(CEO)가 연단에 올라섰다. 그는 이 자리에서 ‘피지컬 AI(Physical AI)’를 로봇·자율주행처럼 현실에서 움직이는 인공지능(AI)의 다음 단계로 제시했다. 같은 자리에서 엔비디아는 로봇과 자율주행 분야 학습(Learning)·훈련(Teaching)을 겨냥한 플랫폼을 공개했다. 해당 발표는 AI가 텍스트·이미지 등을 다루던 기존 기능에서 '물리 법칙이 작용하는 현실 세계의 동작과 변화'를 모델링하고 예측하기 위한 기반으로 관심받았다. 이때 사측의 주요 메시지는 ‘피지컬 AI가 더 이상 연구실 언어에 머물지 않을 것’을 시사한 점이다. 이 메시지가 CES에서 특히 크게 조명된 배경이 있다. 젠슨 황은 키노트에서 AI의 흐름을 인식
피지컬 AI(Physical AI)를 둘러싼 글로벌 패권 경쟁이 모델의 거대화와 데이터 확보전을 넘어서는 양상이다. 이제는 ‘실행의 완결성’이라는 현실적인 문제를 해결하는 데 집중하는 모양새다. 이렇게 뜨거운 감자로 올라선 피지컬 AI는 가상 환의 지능이 로봇·장비 등 물리적 실체에 이식된 형태를 말한다. 즉 인공지능(AI)이 상황을 인식하고 판단하는 ‘뇌’라면, 피지컬 AI는 그 판단을 근육과 관절의 움직임으로 바꿔 실질적인 행동을 수행하는 ‘신체’를 가진 AI다. 이 기술이 제조업의 판도를 바꿀 핵심으로 꼽히는 이유는 ‘자율화(Autonomous)’를 구현하기 때문이다. 기존 로봇이 정해진 궤적만 반복했다면, 피지컬 AI는 스스로 상황을 파악해 최적의 동작을 결정한다. 하지만 이 차세대 지능이 산업 현장에서 가치를 인정받기 위해서는 치명적인 전제 조건이 붙는다. 바로 ‘신뢰성’이다. 가상 및 시뮬레이션 환경에서 백발백중이던 AI 기반 로봇이 실제 공장 라인에 투입되는 순간, 미세한 진동과 엇박자를 내며 멈춰 서는 장면은 더 이상 낯선 풍경이 아니다. 현시점 모든 산업 현장이 원하는 AI의 가치는 모터와 축이 그 결정을 얼마나 ‘제때’, ‘일관된 품질로’
전기차 이용자 만족도 평가 압도적 1위 충전 브랜드 '워터' "'UX 혁신, 압도적 운영 품질, 지속가능한 사업 모델'로 3년 내 국내 TOP 3 도약할 것" 내년도 수익성 확보된 고속도로 휴게소 사업에 '올인' 캐즘(일시적 수요 정체)이란 악재에도 불구하고 여전히 탄소중립의 핵심 중 하나로 꼽히며 전 세계 자본 시장에서 존재감을 발휘하고 있는 전기차 산업. 우리나라에서는 드디어 올해 처음으로 연간 전기차 신규 등록 대수가 20만 대를 넘으면서 전기차 산업의 새로운 단계 진입을 예고했다. 전기차 대전환에 있어 전기차 인프라는 필연이자 필수 조건일 수밖에 없다. 자동차나 배터리뿐 아니라 전기차 인프라 산업에도 주목해야 하는 이유다. '워터(Water)'는 최근 자동차 리서치 전문 기관 컨슈머인사이트의 '제4차(2025년) 연례 전기차 기획조사' 중, 이용자 만족도 평가에서 국내 주요 전기차 충전 인프라를 운영하는 18개 사업자 중 당당히 1위를 차지한 전기차 충전 브랜드다. 워터를 운영하고 있는 브라이트에너지파트너스(BEP)는 세계 최대 자산운용사 중 하나인 블랙록이 현재까지 약 4000억여 원을 투자한 것으로 알려진 유망 기업이기도 하다. 국내 전기차 이용자
액상 화학무기가 도심에 살포된 이후 확산과 잔류 위험을 정밀하게 예측할 수 있는 시뮬레이션 모델이 개발됐다. 해당 모델을 적용한 분석 결과, 일부 맹독성 화학작용제는 살포 직후뿐 아니라 이후에도 지속적인 위험을 유발할 수 있는 것으로 나타났다. 지표면에 가라앉은 화학작용제 액적이 증발하면서 2차 노출이 발생할 수 있기 때문이다. UNIST 지구환경도시건설공학과 최성득 교수 연구팀은 국방과학연구소 연구진과 공동으로 살포된 액상 화학작용제의 이동과 잔류 특성을 분석하는 예측 모델 ‘DREAM-CWA’를 개발했다고 23일 밝혔다. DREAM-CWA는 화학작용제가 공기 중 기체로만 확산된다는 기존 예측 모델과 달리, 액적 형태로 지표면에 잔류할 수 있다는 점을 실질적으로 반영한 것이 특징이다. 특히 액적이 가라앉는 표면을 토양, 아스팔트, 콘크리트 등 도심 환경 요소로 구분해 분석함으로써 시뮬레이션 정확도를 높였다. 표면 특성에 따라 액적에서 증발해 대기로 재유입되는 독성 물질의 양이 달라지기 때문이다. 연구팀은 상온에서 끈적한 액체 상태로 존재하며 맹독성을 지닌 지속성 화학작용제가 살포된 상황을 가정해 시뮬레이션을 수행했다. 그 결과 살포 30분 후 지표면에 남은
삼성전기 – 2026년 AI·자동차 중심 포트폴리오 재편으로 사상 최고 실적 전망 대신증권은 삼성전기(009150)에 대해 투자의견 'BUY'와 목표주가 33만원을 유지했다. 현재주가 25만 4,500원 대비 약 29.7%의 상승여력이 있다는 분석이다. 2026년 매출액 12조 3,160억원(+9.3% YoY), 영업이익 1조 1,860억원(+30.9% YoY)으로 사상 최고 실적 경신이 전망된다. 대신증권은 삼성전기의 2026년 3대 핵심 변화에 주목해야 한다고 강조했다. 첫째, AI 인프라 및 데이터센터 투자 수혜로 FC BGA와 MLCC 매출이 큰 폭으로 증가할 전망이다. FC BGA는 AMD, 아마존 등 다양한 ASIC 업체 대상으로 매출이 확대되며 2026년 20% 성장이 예상된다. MLCC는 산업용 및 전장용 비중이 이미 50%를 넘어섰으며, AI 인프라 투자와 자동차 전장화 확대에서 수혜가 기대된다. 둘째, 2026년 하반기 애플 아이폰18에 피치파인 코일(FP 코일) 신규 공급이 예상되며, 향후 액츄에이터 공급 확대 가능성도 열려 있다. 셋째, 테슬라와의 전략적 협력이 강화될 전망이다. 현재 FC BGA, MLCC, 카메라모듈을 공급하며 매출
개요 AI 모델은 아무리 정교해도 환경이 변하면 성능이 반드시 저하될 수밖에 없다. 최초 완벽에 가까운 정확도를 갖추고 있었다 하더라도 조명 각도부터 소재 반사율, 금형의 마모, 계절별 온습도에 이르기까지 끊임없이 변하는 실제 공정과정에서 차이가 발생하게 되기 때문이다. 이러한 이유로 제조 AI의 진정한 가치는 ‘배우는 공장(Learning Factory)’에 있다. 아무리 잘 보는 AI라고 하더라도 변화에 적응하려면 한 번의 학습으로 끝나는 구조가 아니라 지속적으로 배우고 보정하는 구조(Continuous Learning Loop)를 가져야 한다는 것이다. 이 구조의 핵심이 바로 데이터 루프(Data Loop)다. 그러나 딥러닝의 성능은 단순히 데이터의 ‘양’으로만 결정되지는 않는다. 무의미하거나 부정확한 데이터는 학습 효율이 떨어지고 모델이 불안정해지는 결과가 발생한다. 제조 AI의 본질은 ‘양’이 아니라 ‘정확도’와 ‘전달 구조’에 있다는 것이다. 다시 말해 AI가 어떤 피드백을 얼마나 빠르고 정확하게 받아들이는가가 핵심이다. 제조 AI 학습의 3단계 순환 구조 제조 AI의 정확도를 위해 학습 과정은 아래와 같은 순환형 구조로 설계되어야 한다. 첫째,
·2025년 K콘텐츠 산업 성과와 한계에 대한 데이터 기반 결산 ·AI 전환·슈퍼 IP 확장 중심의 2026년 지원 정책과 예산 방향 제시 ·팬덤·IP·AI를 축으로 한 콘텐츠 산업 구조 전환 전망 공유 지난 17일 서울 코엑스에서 한국콘텐츠산업의 2025년을 결산하고 2026년을 조망하는 ‘NEXT K 2026’ 행사가 열렸다. 이날 행사는 지원사업 설명회와 산업 결산·전망 세미나를 통합 구성해 한 해 성과와 향후 정책 방향을 동시에 짚는 자리로 마련됐다. 진행을 맡은 이대근 한국콘텐츠진흥원 기획예산팀장은 환영사를 통해 “2025년 전 세계의 관심과 열광을 받은 K콘텐츠의 변화 흐름을 준비하고 설계하고 실행하는 해가 2026년이 될 것”이라며 “오늘 이 자리에 함께한 산업 주체들이 그 변화를 함께 만들어갈 것”이라고 말했다. 개회사는 유현석 한국콘텐츠진흥원 원장 직무대행이 맡았다. 유현석 직무대행은 “2025년은 글로벌 경기 침체라는 환경 속에서도 K콘텐츠의 실력을 숫자로 증명한 해였다”며 “넷플릭스에서 가장 많이 시청된 드라마 20편 가운데 4편이 K드라마였고, K팝은 빌보드 200에서 8회 연속 1위를 기록하는 성과를 냈다”고 밝혔다. 그는 이어 “방한
환자 자신의 세포로 만든 장 줄기세포(Intestinal Stem Cells, ISCs)는 면역 거부 반응이 적어 난치성 장 질환 치료의 대안으로 주목받아 왔다. 그러나 기존 배양 방식은 쥐 유래 섬유아세포나 매트리젤 등 동물 성분에 의존해 왔고, 이로 인해 안전성과 규제 문제로 임상 적용에 한계가 있었다. 이에 국내 연구진이 동물 유래 성분 없이도 장 줄기세포를 안정적으로 배양하고, 손상 조직으로의 이동과 재생 능력까지 높일 수 있는 기술을 개발했다. KAIST는 생명화학공학과 임성갑 교수 연구팀이 한국표준과학연구원 나노바이오 측정그룹, 한국생명공학연구원 줄기세포 융합연구센터와 공동 연구를 통해 무이종 환경에서 장 줄기세포의 이동성과 재생 능력을 획기적으로 향상시키는 고분자 기반 배양 플랫폼을 개발했다고 23일 밝혔다. 공동연구팀은 줄기세포 치료제의 임상 적용을 가로막아 온 동물 유래 성분 의존 문제를 해결하기 위해, 동물 성분 없이 사용 가능한 고분자 기반 배양 표면 기술 ‘PLUS(Polymer-coated Ultra-stable Surface)’를 개발했다. PLUS는 기상 증착 방식으로 코팅된 합성 고분자 표면으로, 표면 에너지와 화학 조성을 정밀하
현대 물리학의 두 축인 양자역학과 상대성이론은 공간과 시간을 바라보는 관점에서 오랫동안 조화를 이루지 못해 왔다. 상대성이론이 공간과 시간을 ‘시공간’으로 통합해 다루는 반면, 양자역학은 공간에 대해서만 양자상태를 정의하고 시간은 변화의 과정으로 취급해 왔기 때문이다. 이러한 차이는 두 이론이 100년 넘게 근본적 불일치를 안고 발전해 온 배경으로 꼽힌다. 이 같은 문제에 대해 국내 연구진이 새로운 이론적 틀을 제시했다. UNIST는 물리학과 이석형 교수가 시간에 따라 전개되는 양자역학적 동역학 전체를 하나의 거대한 양자상태로 다루는 새로운 이론을 정립하고, 이를 세계적 권위의 학술지인 Physical Review Letters에 게재했다고 22일 밝혔다. 이 교수가 제안한 핵심 개념은 ‘시간 위의 다자 양자상태’다. 이는 여러 시점에 걸쳐 일어나는 양자 과정을 각각 분리된 과정으로 보지 않고, 하나의 통합된 양자상태로 묶어 표현하는 방식이다. 이를 통해 공간적으로 떨어진 계뿐 아니라 시간적으로 분리된 계 역시 동일한 수학적 구조 안에서 다룰 수 있게 됐다. 연구진은 그동안 서로 다른 언어로 기술돼 온 공간상의 양자 ‘상태’와 시간상의 양자 ‘과정’을 하나의
우리가 사용하는 플라스틱 제품 대부분은 녹인 플라스틱을 금형에 주입해 동일한 제품을 대량 생산하는 사출성형 공정을 통해 만들어진다. 그러나 공정 조건이 조금만 달라져도 불량이 발생하기 쉬워, 그동안 제조 현장에서는 숙련자의 경험과 감에 크게 의존해 왔다. 고숙련자 은퇴와 외국인 인력 증가로 제조 지식 단절이 우려되는 가운데, 국내 연구진이 인공지능으로 공정을 스스로 최적화하고 지식을 전수하는 해법을 제시했다. KAIST는 기계공학과 유승화 교수 연구팀이 사출 공정을 스스로 최적화하는 생성형 AI 기술과, 현장 지식을 누구나 활용할 수 있도록 지원하는 LLM 기반 지식 전이 시스템을 세계 최초로 개발하고 그 성과를 국제학술지에 연속 게재했다고 22일 밝혔다. 연구는 기계공학과와 이노코어 PRISM-AI 센터가 공동으로 수행했다. 첫 번째 성과는 환경 변화나 요구 품질에 따라 자동으로 최적 공정 조건을 추론하는 생성형 AI 기반 공정추론 기술이다. 기존에는 온도나 습도, 목표 품질이 바뀔 때마다 숙련자가 반복적인 시행착오를 거쳐 공정 조건을 다시 설정해야 했다. 연구팀은 실제 사출 공장에서 수개월간 수집한 환경 데이터와 공정 파라미터를 활용해 확산 모델(Diff
컴퓨터지원설계(CAD) 화면을 볼 때 가장 당황스러운 순간이 있다. 모델을 열었더니 경고와 에러가 이어지고 원인은 복잡한 용어로만 나열되는 상황이다. ‘하나 이상의 파일이 누락되었습니다’, ‘스케치가 초과 정의되었습니다’, ‘재생성 오류가 있습니다’ 등이다. 이러한 경고문은 원인도 아니고 해결책도 아니다. 이어 모델 목록에는 빨간 표시가 늘어나고, 부품들 사이 연결이 풀리면서 위치가 어긋난다. 한 군데를 고치면 다른 곳이 연쇄적으로 깨진다. 도면까지 연결돼 있으면 더욱 번거로워진다. 화면에서 보던 모양이 바뀌거나 치수가 틀어지고, 업데이트 한 번에 표기가 뒤집혀서 원인부터 다시 찾아야 한다. 그 순간 설계자는 ‘이걸 어디서부터 손대야 하지’가 아니라 ‘내가 이걸 손댈 자격이 있나’부터 우려된다. 설계가 멈추는 건 지식이 부족해서가 아니라, 문제를 풀 수 있는 형태로 문제가 주어지지 않아서다. 소프트웨어는 증상을 나열하지만, 작업자는 원인·우선순위·방향성을 원한다. 결국 CAD 분야의 숙련자와 초보를 가르는 것은 지식의 양이 아니라, 시스템이 던진 신호를 인간의 언어로 번역해 수정 가능한 절차로 바꾸는 능력이다. 이 장벽을 생성형 AI(Generative AI