철강 플랜트는 여러 종류의 많은 기계 및 전기 설비와 계측·제어 시스템으로 구성되어 있으며, 원료에서 제품까지 다양한 공정이 연속적으로 이루어지는 대표적인 대규모 플랜트이다. 이 글에서는 철강 플랜트, 구체적으로는 열간 압연 라인·냉간 압연 라인 등의 압연 라인을 대상으로 스마트 매뉴팩처링에 기여하는 플랜트의 감시·진단 시스템과 적용 사례를 소개한다. 먼저, 철강 압연 라인에서 스마트 매뉴팩처링을 실현하는 시스템 개념을 설명한다. 다음으로 그곳에 배치되는 감시·진단 기능의 요건을 정의하고, 마지막으로 이러한 개념과 시스템 구성 위에 구현되는 감시·진단의 사례를 소개한다. 데이터 이활용 시스템 스마트 매뉴팩처링은 디지털 기술을 매개로 한 데이터를 활용해 제조의 전체 프로세스에서 다양한 의사 결정과 제어를 가속화하는 대응이다. 철강 플랜트는 오랜 발전 과정에서 생산 계획에서부터 제조 라인까지의 시스템 구성, 기능 배치 및 데이터․정보의 흐름이 최적화되어 왔다. 특히 철강 압연 라인은 일찍부터 감시 제어의 디지털화가 진행되어 정상 시의 제조 프로세스는 거의 자동화되어 있다. 이처럼 고도 자동화를 실현하고 있는 시스템 체계에서 스마트 매뉴팩처링을 추진하기 위해서는
[첨단 헬로티] 인공지능(AI)을 활용해 산업현장에서 가동 중인 기계설비의 이상 징후를 찾아내는 기술이 개발됐다. 한국기계연구원(이하 기계연) 기계시스템안전연구본부 시스템다이나믹스연구실 선경호 책임연구원은 운전 중인 기계설비를 영상 촬영한 후 AI가 자율적으로 기계의 고장여부를 진단하는 머신비전 기술을 개발했다. ▲ 한국기계연구원 시스템다이나믹스연구실 연구진이 머신비전 진단을 위해 급수펌프 진단용으로 설치한 카메라를 점검하고 있다. 머신비전은 사람의 시각을 이용한 판단기능을 기계에도 적용한 것이다. 예를 들면 카메라가 수백, 수천 개의 전자회로 기판을 반복 촬영하면서 다른 기판과 달리 연결이 잘못되어 있는 부분을 찾아내거나, 제품의 표면의 라벨이 제 위치에 붙어있지 않는 것을 골라내는 등의 검사를 할 수 있는 기술이다. 연구팀은 세계 최초로 이 기술을 기계설비의 진단에 적용했다. 시각적 이미지 분석에 가장 많이 활용되는 딥러닝 알고리즘인 ‘합성곱 신경망’을 이용해 기계장비의 가동 영상을 학습함으로써 기계장비에서 발생하는 진동을 분석하고 이상 징후를 발견할 수 있도록 했다. 연구팀은 실험실 규모에서 냉각수 급수펌프 진동 영상을 촬영해 머신