레이저 보호·광학 센서·AI 연산에 활용 기대… 국제 저널 게재 및 특허 출원 완료 한국전자통신연구원(ETRI)이 그래핀을 활용한 광경화 투명필름 개발에 성공했다. 이번 성과는 그래핀의 산업적 활용 가능성을 넓히는 신소재 기술 확보로 향후 레이저 보호 장치, 광학 센서, 인공지능 광소재 등 다양한 분야에 활용될 것으로 기대된다. 연구진은 그래핀을 안정적으로 분산시켜 투명 필름으로 구현하는 기술을 개발했다. 해당 필름은 빛의 세기에 따라 투명도가 달라지는 광학 비선형 특성을 가지며 이에 따라 강한 빛을 차단하는 기능으로 광학 보호용 필름에 활용이 가능하다. 그래핀은 기계적 강도와 전기전도성이 뛰어난 소재지만 산업 현장에서 안정적으로 분산시키기 어려워 활용에 제약이 있었다. 기존에는 분산제로 문제를 해결했으나 이 방식은 그래핀의 고유한 성질을 손상시킬 가능성이 있었다. ETRI는 별도의 화학적 분산제를 사용하지 않고도 그래핀을 고분자 내에 균일하게 분산시킬 수 있는 ‘그래핀 분산 광경화 콜로이드 조성물’을 개발했다. 이 기술을 바탕으로 안정적인 그래핀 분산 필름 및 성형체를 간편하게 제조할 수 있게 됐다. 조성물은 1년 이상 침전 없이 보관이 가능하며 자외선을
인공지능 시대가 도래하면서 방대한 영상 데이터를 빠르고 효율적으로 처리해 의미 있는 정보를 도출하는 머신비전(Machine Vision, 이미지 인식) 기술의 중요성이 커지고 있다. 머신비전 기술은 자율주행 자동차, 의료 영상 분석, 휴머노이드 로봇 등 첨단 산업 분야에 활용되며, 더 빠르고 정확한 머신비전 기술이 핵심 경쟁력으로 분류된다. 이런 흐름 속에서 경희대학교 신소재공학과 강성준 교수 연구팀이 인간의 시냅스(Synapse)를 모사한 광 뉴로모픽(Neuromorphic) 소자를 개발해 머신비전 기술을 한 단계 발전시켰다. 이번 연구 결과는 학문적 우수성을 인정받아 나노 분야의 세계적인 학술지 ‘ACS Nano(IF=15.8)’의 4월 표지 논문으로 선정됐다. 시냅스는 뇌 속에서 신경세포를 연결하며 정보를 전달하고 기억하는 핵심 구조다. 연구팀은 인간의 뇌 구조와 동작 방식을 모사한 광 뉴로모픽 소자를 개발했다. 이 소자는 빛(광신호)을 수집함과 동시에 저장·분석할 수 있어 기존 이미지 처리 기법보다 훨씬 빠르고 정확한 인식 성능을 보였다. 광센서, 메모리 등 복잡한 구성요소를 포함한 기존의 인공지능 기반 이미지 처리 장치와 달리 산화물 반도체를 활용해
한국전자통신연구원(ETRI)이 안리쓰(Anritsu)의 벡터 네트워크 분석기(VNA) ‘MS46122B’를 활용한 ETRI 실내투과형 RIS(Reconfigurable Intelligent Surface, 재구성 지능형 표면) 기술 실험을 진행했다. 차세대 고주파 통신 기술로 주목받고 있는 RIS 기술 연구에 있어 정확하고 유연한 측정 환경이 핵심으로 떠오르고 있다. RIS는 고주파 신호의 실내 통과를 돕는 기술로, 특히 건물 유리창을 통한 밀리미터파(mmWave) 통신에서 발생하는 전파 감쇠 문제 해결에 큰 가능성을 보이고 있다. 특히 이번에 개발된 ETRI의 기술은 투명한 PET 필름 형태의 초소형 안테나 배열을 창호에 부착해 별도의 중계기 없이도 신호 투과율을 극대화할 수 있다는 점에서 주목을 받고 있다. ETRI가 공개한 실내 통신용 투명 RIS 기술 실험 장면에서는 안리쓰의 벡터 네트워크 분석기(VNA) MS46122B가 주요 계측 장비로 활용됐으며, 소형 장비에서의 고정밀 측정 성능을 입증했다. 실험에서는 안리쓰의 2-port VNA인 MS46122B를 이용해 RIS 필름을 부착한 유리와 일반 유리 간의 S-파라미터 및 투과 손실 비교 측정이 진행
인하대학교는 백광준 조선해양공학과 교수와 이준희 박사과정 학생이 최근 Coanda 효과를 적용한 차세대 친환경 프로펠러 기술을 개발했다고 9일 밝혔다. Coanda 효과는 공기나 물 같은 흐르는 물질인 유체가 곡면을 따라 흐르려는 성질을 말한다. 이번 연구에선 Coanda 효과를 활용한 새로운 형태의 프로펠러를 설계했다. Coanda 효과를 적용한 프로펠러는 저회전 조건에서도 추가적인 양력을 생성해 추진력을 유지하며 회전 토크 감소를 통해 전력 사용 효율을 극대화하는 것이 특징이다. 또한 기존 에너지 절감장치(ESD)의 복잡한 구조적 한계를 극복할 수 있다. 연구진은 개발한 프로펠러를 대상으로 자항 추진(Self-propulsion) 조건에서의 성능을 수치적으로 분석했다. 실제 선박처럼 스스로 앞으로 나아가는 조건에서 성능을 측정한 것이다. 연구는 6500t급 유조선을 대상으로 진행됐다. 시간에 따라 변하는 복잡한 유체 흐름을 분석할 수 있는 시뮬레이션 기법인 URANS 기반의 CFD 해석을 통해 기존 프로펠러 대비 약 7.8%의 추진 동력 절감 효과가 있는 것으로 확인했다. 특히 일반적인 균일 유동 조건이 아닌 실제 선박 환경을 반영해 평가했기 때문에 기술
‘셀카’와 같은 개인정보가 포함된 민감 데이터를 서버로 직접 보내지 않고도 고품질 이미지 등 콘텐츠 생성을 돕는 인공지능(AI) 모델을 울산과학기술원(UNIST) 연구진이 개발했다. UNIST 인공지능대학원 유재준 교수팀은 연합학습 AI 모델인 ‘프리즘’(PRISM·PRivacy-preserving Improved Stochastic Masking)을 개발했다고 9일 밝혔다. 유 교수팀에 따르면 연합학습이란 민감 데이터를 직접 서버에 올리지 않고 각자 장치의 ‘로컬 AI’가 학습을 수행한 뒤 그 결과만을 모아 서버에 전달함으로써 하나의 ‘글로벌 AI’를 만드는 기술이다. 프리즘은 연합학습 과정에서 로컬 AI와 글로벌 AI를 연결하는 학습 중재자 역할을 하는 AI 모델이다. 최근 오픈AI의 새 이미지 생성 모델을 이용해 일본 애니메이션 제작사 지브리의 화풍으로 사진 바꾸기가 유행하고 있는데, 셀카를 지브리 화풍으로 바꾸려면 사진을 서버에 올려야 하기 때문에 개인정보 침해 우려가 있다. 반면 프리즘을 이용하면 모든 처리가 스마트폰 안에서 이뤄져 사생활 침해를 막고 결과도 빠르게 받아볼 수 있는 것이다. 단 스마트폰에서 이미지를 직접 생성하는 로컬 AI 모델 개발
마우저 일렉트로닉스는 빠르게 진화하는 뇌-컴퓨터 인터페이스(brain-computer interface, BCI) 기술을 탐구한 ‘함께 만드는 혁신(Empowering Innovation Together, EIT)’ 기술 시리즈 최신호를 공개했다. 이번 EIT 시리즈 최신호에서는 마인드 컨트롤 시스템 개발을 위한 엔지니어링 과제와 기회요소에 대해 심도 있게 다룬다. BCI는 인간의 뇌와 외부 장치 간의 직접적인 통신을 가능하게 함으로써 신체 마비 환자의 운동 기능 회복과 의사소통 장애가 있는 사람의 언어능력 향상은 물론, 인지 능력 강화 등과 같은 다양한 애플리케이션을 지원할 수 있다. 이러한 시스템은 전극을 기반으로 신경 신호를 획득하는 기술과 첨단 신호 처리 알고리즘을 활용해 뇌 활동을 분석하고, 이를 실행 가능한 명령으로 변환한다. ‘인간을 잇는 기술(The Tech Between Us)’ 팟캐스트에서는 진행자인 마우저의 레이몬드 인 기술 콘텐츠 디렉터가 매사추세츠 종합병원의 중증 신경과 전문의이자 하버드 의대 강사인 댄 루빈 박사와 함께 신호 전송 지연 문제와 신호 충실도, 그리고 뉴럴 기술의 윤리적 고려 사항 등을 비롯해 복잡한 BCI 기술 구현 과
한국과학기술원(KAIST)은 온실가스인 이산화탄소를 유용 화합물로 분해할 수 있는 고성능 세라믹 전해전지를 개발했다고 1일 밝혔다. 세라믹 전해전지(SOEC)는 이산화탄소를 일산화탄소 등 유용한 화학물질로 전환할 수 있는 에너지 변환 기술로, 효율성이 높아 주목받고 있지만 800도 이상의 작동 온도가 필요해 유지비용이 많이 들고 안정성이 낮다는 한계가 있다. 기계공학과 이강택 교수 연구팀은 전기가 잘 통하는 초이온전도체를 기존 전극에 섞어 만든 ‘복합 나노섬유 전극’을 개발해 세라믹 전해전지가 더 낮은 온도에서도 효율적으로 작동할 수 있도록 했다. 나노섬유 굵기를 기존의 절반 수준으로 줄여 전극을 머리카락 굵기의 1000분의 1 수준인 100㎚(나노미터·10억분의 1m)로 제작, 전기분해 반응이 일어나는 면적을 극대화했다. 이런 방법으로 세라믹 전해전지의 작동 온도를 낮춰 이산화탄소 분해 성능을 50%가량 높였다. 복합 나노섬유가 적용된 세라믹 전해전지는 기존 보고된 소자 중 가장 높은 수준의 이산화탄소 분해 성능인 1.25A/㎠(제곱센티미터당 암페어, 700도 기준)를 기록했다. 또 300시간의 장기 구동에도 안정적인 전압을 유지했다. 이강택 교수는 “이산
인하대학교는 강태준 기계공학과 교수 연구팀이 체온으로 전기 에너지를 생산하는 인공피부 원천소재를 개발했다고 31일 밝혔다. 강태준 기계공학과 교수는 인천대, 한국과학기술연구원과 함께 공동 연구를 펼치면서 준고체 열전 전해질을 활용한 자가발전 인공피부를 개발했다. 최근 열에너지를 전기로 바꾸는 기술 중 하나로, 산화·환원 반응의 온도 민감성을 이용한 액상 열전지 기술이 주목받고 있다. 하지만 액상 전해질은 흘러내리거나 증발하기 쉬워 장시간 사용이 어렵고 내구성도 떨어진다는 문제가 있다. 연구팀은 이를 해결하기 위해 젤 상태로 단단하면서도 유연한 ‘하이드로젤 전해질’을 개발하고, 체온을 이용한 전력 생산과 웨어러블 기기의 작동을 가능하게 하는 인공피부를 제작했다. 이번 개발된 하이드로젤은 물을 잘 끌어다니는 성질을 가진 고분자와 구조를 튼튼하게 유지해주는 고분자로 구성됐다. 두 고분자의 혼합 비율에 따라 넓은 범위의 탄성계수 조절이 가능하다. 연구팀은 두 고분자의 혼합 비율을 최적화해 사람의 피부와 같은 탄성을 가지면서도 높은 강도를 가진 하이드로젤울 만들었다. 이는 몸에 직접 닿아도 안전한 생체 적합 소재로, 인공피부나 웨어러블 기기에 활용하기에 적합한 특성을
한국과학기술원(KAIST)은 초저잡음 중적외선 광원을 초소형 칩 상에서 구현했다고 31일 밝혔다. 이한석 KAIST 물리학과 교수 연구팀은 최덕용 호주국립대 교수, 피터 라키치 예일대 교수, 고광훈 한국원자력연구원 박사, 롱핑 왕 닝보대학교 교수 연구팀과 국제공동연구를 통해 중적외선 파장 대역에서 주파수 흔들림이 매우 작은 브릴루앙 레이저를 초소형 반도체 칩 위에 최초로 구현하는 데 성공했다. 칩 상에서 저잡음 브릴루앙 레이저를 구현하는 기술은 이미 잘 알려져 있었으나, 중적외선 파장 대역에서는 레이저 구현에 필수적인 낮은 광 손실의 고성능 광소자가 없다는 점이 문제였다. 일반 산화규소 유리와 같이 가시광선과 근적외선에서 투명해 광소자 제작에 사용되었던 많은 물질이 중적외선 파장에서는 빛을 강하게 흡수해 이용 불가하고, 중적외선의 특징인 빛과 분자 사이 강한 상호작용으로 인해 여러 광 손실이 추가 발생해 고성능 광소자를 제작하기 어려웠다. 연구팀은 중적외선에서 높은 투과도를 보이지만 가공이 까다로운 칼코겐화합물 유리를 독창적인 기법으로 성형해 초고품질 광공진기를 제작했다. 또 중적외선 광소자에 고유한 표면 흡착 분자에 의한 광손실을 정량분석하고 억제하는 기술
한국과학기술원(KAIST)은 강진영·이원희 교수 공동 연구팀이 극히 짧은 시간 동안 일어나는 생명체의 단백질 반응을 분석할 수 있는 시간 분해 초저온 전자현미경 기법을 개발했다고 24일 밝혔다. 생명현상과 신약 개발 연구 분야에서 ㎲(마이크로초·100만 분의 1초)∼ms(밀리초·1000분의 1초) 단위에서 일어나는 단백질 반응 분석을 위해 시간 분해 초저온 전자현미경(TRCEM·Time-resolved cryo-electron microscopy) 기술이 주목받고 있다. TRCEM은 단백질 반응체의 중간 상태를 초저온으로 급속 냉동해 구조를 분석하는 기술이다. 다만 시료가 많이 들고 최소 시간 반응이 10ms 이상 걸려 극히 짧은 시간 동안만 존재하는 중간체를 포착하기 어려웠다. 연구팀은 수 ㎛(마이크로미터·100만분의 1m) 두께의 얇은 박막 형태의 소재인 패럴린을 이용해 미세유체 혼합-분사 장치 방식의 TRCEM 기법을 개발했다. 미세유체 채널 안에서 시료를 혼합한 뒤 분사·냉각해 관찰하는 방식으로, 패럴린을 이용해 기존보다 더 얇고 단순한 구조를 구현함으로써 시료 소모량을 기존의 3분의 1 수준으로 줄였다. 특히 미세유체 소자 내에서 반응 시작 전 시료
한국과학기술원(KAIST) 이상엽 특훈교수 연구팀은 차세대 플라스틱 소재인 폴리에스터 아마이드를 생산할 수 있는 미생물 균주를 개발했다고 20일 밝혔다. 폴리에스터 아마이드는 일반적으로 많이 사용되는 PET(폴리에스터)와 나일론(폴리아마이드)의 장점을 모두 갖춘 차세대 소재로, 화석 연료에서만 생산할 수 있어 환경이 오염될 우려가 있다. 연구팀은 자연계에 존재하지 않는 새로운 미생물 대사회로를 설계해 9종의 다른 폴리에스터 아마이드를 생산할 수 있는 플랫폼 미생물 균주를 개발했다. 폐목재나 잡초 등 바이오매스에서 생산된 포도당을 에너지원으로 사용해 폴리에스터 아마이드를 친환경적으로 생산할 수 있다. 연구팀이 한국화학연구원 정해민·신지훈 연구원과 함께 개발한 플라스틱의 물성을 분석한 결과, 친환경 소재인 고밀도폴리에틸렌(HDPE)과 유사한 성질을 가진 것으로 나타났다. 친환경적이면서도 기존 플라스틱을 대체할 수 있을 만큼 강도와 내구성이 뛰어나다고 연구팀은 설명했다. 이상엽 특훈교수는 “석유화학 산업에 의존하지 않고도 바이오 기반 화학 산업을 통해 폴리에스터 아마이드를 만들 수 있는 가능성을 처음으로 제시했다”며 “생산량과 생산성을 더 높이기 위한 후속 연구를
개요 ADI 트라이나믹 모터 컨트롤러(Trinamic motor controller, TMC) ROS1 드라이버는 로봇 운영체제(robot operating system, ROS) 프레임워크 내에서 TMC의 드라이버 계층과 애플리케이션 계층 간에 통신을 매끄럽고 손쉽게 구현할 수 있게 해준다. 이러한 장점은 다양한 TMC 보드에 적용된다. 이 글에서는 모터 제어, 정보 검색, 명령 실행, 파라미터 수집, 다중 구성 지원을 포함하여 TMC ROS1 드라이버의 기능에 대해 자세히 설명한다. 또한 이 모터 컨트롤러를 임베디드 시스템 및 애플리케이션에 통합함으로써 ROS 프레임워크 내에서 어떠한 이점들을 누릴 수 있는지도 함께 알아본다. ADI 트라이나믹 모터 컨트롤러 ROS1 드라이버 ROS는 로봇 시스템 또는 애플리케이션을 개발할 수 있게 도와주는 드라이버에서부터 첨단 알고리즘에 이르기까지 소프트웨어 라이브러리와 강력한 개발자 도구를 모두 포함하는 로봇 미들웨어다. ADI 트라이나믹 모터 컨트롤러는 새로운 종류의 지능형 액추에이터를 구현할 수 있게 해주며, ROS가 특히 로봇 공학을 비롯해 광범위하게 활용됨에 따라 제조 및 산업 자동화 애플리케이션에서의 활용성을
한번 충전으로 폭발 위험 없이 최대 1000㎞를 갈 수 있는 차세대 장거리 주행 배터리 개발에 청신호가 켜졌다. 울산과학기술원(UNIST)은 에너지화학공학과 이현욱 교수팀이 배터리 양극 신소재인 과리튬 소재의 산소 발생 원인을 규명하고, 이를 해결할 소재 설계 원리를 제시했다고 18일 밝혔다. 이번 연구에는 한국과학기술원(KAIST) 서동화 교수, 중앙대, 포항가속기연구소, 미국 UCLA 유장 리 교수, UC버클리, 로런스버클리연구소가 참여했다. 과리튬 소재는 이론적으로 4.5V 이상의 고압 충전을 통해 배터리에 기존보다 30%∼70% 더 많은 에너지를 저장할 수 있다. 전기차 주행거리로 따지면 한 번 충전으로 최대 1000㎞를 갈 수 있다. 그러나 이 소재는 고압 충전 과정에서 소재 내부 산소가 산화돼 기체 형태로 방출되면서 폭발 위험이 커지는 문제가 있다. 연구팀은 4.25V 부근에서 산소가 산화되면서 부분적인 구조 변형이 발생해 산소 가스가 방출된다고 분석하고, 산소의 산화를 원천적으로 막는 전극 소재 설계 방식을 제시했다. 과리튬 소재의 전이금속 일부를 전기음성도가 더 낮은 전이금속 원소로 치환하는 전략이다. 두 금속 원소 간 전기음성도의 차이로 전기
KAIST 연구진이 매우 낮은 온도와 압력에서도 에너지 손실 없이 암모니아를 합성할 수 있는 고성능 촉매를 개발했다. KAIST는 생명화학공학과 최민기 교수 연구팀이 에너지 소비와 이산화탄소 배출량을 크게 줄이면서도 암모니아 생산성을 획기적으로 높일 수 있는 혁신적인 촉매 시스템을 개발했다고 11일 밝혔다. 현재 암모니아는 철(Fe) 기반 촉매를 이용해 하버-보슈 공정이라는 100년이 넘은 기술로 생산되고 있다. 하지만 이 방식은 500℃ 이상의 고온과 100기압 이상의 고압이 필요해 엄청난 에너지를 소비하고 세계 이산화탄소 배출량에서 상당한 비율을 차지하는 주범으로 지목됐다. 더구나 이렇게 생산된 암모니아는 대규모 공장에서 제조되기 때문에 유통 비용도 만만치 않다. 이에 대한 대안으로 최근 물을 전기로 분해하는 기술인 수전해를 통해 생산된 그린 수소를 이용해 저온·저압(300도, 10기압)에서 암모니아를 합성하는 친환경 공정에 관한 관심이 급증하고 있다. 그러나 이러한 공정을 구현하려면 낮은 온도와 압력에서도 높은 암모니아 생산성을 확보할 수 있는 촉매 개발이 필수적이며, 현재의 기술로는 이 조건에서 암모니아 생산성이 낮아 이를 극복하는 것이 핵심 과제로
국내 소방 설비의 혁신을 위해 미세한 물 분사 방식의 ‘미분무 소화설비’로의 전환이 시급하다는 연구 결과가 발표됐다. 소방용품 전문기업 육송(주)의 박세훈 대표는 최근 발표한 논문 ‘멀티 미분무 노즐 성능시험 및 타 소화설비 비교시험에 대한 연구’에서 가스계 소화설비와의 비교시험 결과를 공개하며, 친환경 미분무 소화설비 도입 필요성을 강조했다. 해당 연구는 지난 2월 한국방재학회 학술대회에서 발표되며 국내 소방 설비 혁신의 중요성을 환기시켰다. 가스계 소화설비는 이산화탄소 등 기체 형태의 소화약제를 방사해 화재를 진압하는 방식으로, 현재 국내 데이터센터와 원자력발전소 등 국가 기반시설에 100% 적용되고 있다. 하지만 선진국들은 탄소 배출 저감을 위해 가스계 소화설비를 점진적으로 줄여가고 있는 반면, 한국은 여전히 곧 사용이 중단될 예정인 할로겐 화합물 계열 소화약제를 사용하고 있는 실정이다. 이에 대한 대안으로 떠오르는 것이 미분무 소화설비다. 미세한 물 입자를 화원 주변에 분사하는 방식으로, 물이 화염과 접촉하면서 급격하게 증발하거나 팽창해 열을 흡수하고 주변을 냉각시키는 효과를 낸다. 하지만 시설물의 특성에 맞춘 성능 검증이 필수적이므로, 국내에서는 아