얇은 막 형태 '맥신 초박막 스피커'...유연한 디스플레이 등에 활용 국내 연구진이 어디든지 붙일 수 있고, 모양도 자유자재로 바꿀 수 있는 스피커를 개발했다. 울산과학기술원(UNIST)은 에너지화학공학과 고현협 교수팀이 한국화학연구원 안기석 박사팀과 함께 '스피커 자체의 형태를 변화시켜 소리의 방향을 조절할 수 있는 맥신 초박막 스피커'를 개발했다고 28일 밝혔다. 이 초박막 스피커는 마이크로미터(㎛·100만분의 1m) 이하의 얇은 막 형태다. 각종 표면에 쉽게 붙일 수 있고, 형태도 바꿀 수 있다. 스피커 지지대 모양에 따라 360도나 선택적인 위치로 출력도 할 수 있다. 공동 연구팀은 각종 센서나 반도체 등으로 쓰이는 평면 구조 나노 물질인 맥신(MXene)을 스피커 개발에 활용했다. 또 두께가 열이 침투되는 깊이보다 얇은 패럴린 기판을 사용했다. 이 덕분에 소리를 양방향으로 출력할 수 있고, 굽히거나 비트는 등 모양을 변형시켜도 안정적인 소리를 만들어낼 수 있다. 높은 음압 레벨(SPL) 출력(15㎑에서 74.5㏈)이나 14일간의 소리 성능 테스트에서 높은 안정성을 보였다고 연구팀은 설명했다. 특히 20㎝×20㎝ 크기의 유연한 대면적 표면으로 포물선형
방사선에 포함된 중성자를 더 효율적으로 막을 수 있는 방법이 개발됐다. 울산과학기술원(UNIST)은 반도체 소재·부품대학원 및 신소재공학과 권순용 교수팀이 방사선 중성자를 막을 수 있는 차폐막을 개발했다고 9일 밝혔다. 방사선에 포함된 중성자는 원자력 발전, 의료 기기, 항공·우주산업 등에 필수적으로 사용된다. 그러나 유출되면 다른 원자들과의 상호 작용으로 전자 기기나 생명체에 예측하지 못한 현상을 유발하는 위험한 입자다. 연구팀은 2차원 나노물질인 맥신(MXene)의 모체인 맥스(MAX Phase)와 맥신을 직접 합성했다. 여기에 중성자를 흡수할 수 있는 탄화 붕소를 잘게 쪼개 맥신층 사이에 삽입하는 기술을 고안했다. 연구팀은 맥신-탄화 붕소 혼합 용액의 안정성을 높여 큰 면적의 유연하고 가벼운 중성자 차폐 필름을 만들었다. 또 실험을 통해 다양한 물체의 표면에 코팅할 수 있는 기술도 개발했다. 중성자 차폐 코팅막을 입힌 나일론 복합체는 2만번 이상의 굽힘 테스트에서도 최대 98%까지 원형을 유지했다. 특히 밀리그램 단위의 탄화 붕소 사용에도 높은 중성자 차폐율(30㎎ 사용 시 40%)을 보였다고 연구팀은 설명했다. 권순용 교수는 "이번 기술로 원하는 두께
자동차 디스플레이, 바이오 헬스케어, 군사 및 패션 등 다양한 분야에서 많은 각광을 받고 있는 투명 플렉시블 디스플레이는 약간의 변형에도 쉽게 깨지는 성질을 가지고 있다. 이를 해결하고자 탄소 나노튜브, 그래핀, 은나노와이어, 전도성 고분자 등 많은 투명 플렉시블 전도성 소재에 관한 연구가 이뤄지고 있다. KAIST는 전기및전자공학부 최경철 교수 연구팀이 나노종합기술원 이용희 박사팀과의 공동 연구를 통해 맥신 나노기술을 활용해 물에 노출돼도 뒷배경을 보이며 빛을 발광하는 방수성 투명 플렉시블(유연) OLED 개발에 성공했다고 31일 밝혔다. 2차원 맥신(MXene) 소재는 높은 전기 전도도와 투과도를 보이고 용액공정을 통한 대규모 생산성 등의 매력적인 특성을 가진 전도성 소재임에도 불구하고 대기 중 수분이나 물에 의해 전기적 특성이 쉽게 열화되기 때문에 고수명의 전자장치로 활용되는데 한계가 있었고, 이로 인해 정보 표시가 가능한 매트릭스 형태로의 시스템화 단계까지 이루어지지 못한 상황이었다. 최경철 교수 연구팀은 수분이나 산소에 의해 산화되는 것을 방지하는 인캡슐레이션(encapsulation) 전략을 통해 환경적으로 견고한 고수명의 맥신 기반 OLED를 개
"초소형·초박막화 반도체소자 개발에 기여" 나노종합기술원은 극한 환경에서 견디는 맥신(MXene) 소재를 개발했다고 26일 밝혔다. 전기전도도가 우수한 2차원 나노 소재인 맥신은 에너지 저장소자·센서·전자파 차단 분야에서 전극으로 사용된다. 다만 공기·용액 내에서 매우 쉽게 산화해 맥신 본래의 우수한 여러 물성을 잃어버리는 단점이 있어, 기술 상용화 단계로 도약하거나 산업에 응용하려면 산화 안정성을 향상시켜야 했다. 기술원은 피롤(Pyrrole)이라는 유기 분자를 맥신 표면에 결합하는 방법으로 수용액에서 수분과의 반응을 막아 맥신의 산화 안정성을 획기적으로 높였다. 이 소재는 상온에서 700일, 고온(70도)에서 6주, 강산화제인 과산화수소에서는 50일 동안 변질하지 않았다. 피롤 처리된 맥신으로 제작한 에너지 저장소자의 저장 용량이 기존 저장소자보다 40% 증가했다고 기술원 측은 전했다. 이용희 선임연구원은 "맥신 소재 상용화를 앞당기는 연구"라며 "향후 초미세 성형화, 초소형화, 초박막화 등이 특징인 차세대 반도체소자 기술 개발에 기여할 것"이라고 말했다. 이번 연구 결과는 최근 재료 분야 국제학술지인 '어드밴스트 펑셔널 머티리얼즈'에 표지논문으로 실렸다