양자점의 리간드 교환법 개선해 효율 경신…장기간 보관해도 효율 유지 UNIST 에너지화학공학과 장성연 교수팀이 안정성이 우수한 유기양이온기반 페로브스카이트(이하 유기계 페로브스카이트) 양자점을 합성하고, 태양전지용 광활성 박막의 내부 결함을 억제하는 새로운 리간드 치환 기술을 개발했다. 장성연 교수는 “개발된 기술을 바탕으로 양자점 태양전지의 효율 18.1%를 달성했다”며 “이는 현재까지 미국 재생에너지연구소(National Renewable Energy Laboratory, NREL)에서 공인한 양자점 태양전지 중 세계 최고 효율”이라고 설명했다. 지난해 나노기술의 핵심소재인 양자점을 발견하고 발전시킨 과학자 3인이 노벨화학상을 수상할 만큼 관련 분야에 대한 관심도가 높아지고 있다. 양자점은 수십 나노미터 내외의 매우 작은 반도체 결정으로 입자의 크기에 따라 광전기 특성을 조절할 수 있다. 특히 페로브스카이트 양자점은 우수한 광전기적 특성을 가진다. 상기판 위에서 성장시키는 과정 없이 용매에 뿌리거나 바르는 공정을 통해 태양전지를 제조할 수 있다. 이로 인해 제조 환경에 구애받지 않고 비교적 단순한 방식으로 일정한 품질을 낼 수 있게 된다. 그러나 실제 양
[첨단 헬로티] 양자점(Quantum dot)을 이용해 태양광을 전기로 바꾸는 ‘양자점 태양전지’의 효율을 11.53%로 높인 기술이 나왔다. 장성연 UNIST 에너지 및 화학공학부 교수팀은 ‘유기 고분자’를 소재로 적용해 양자점 태양전지의 성능을 극대화하는 ‘양자점-유기 고분자 접합 태양전지’를 개발했다. ▲ 장성연 UNIST 에너지 및 화학공학부 교수 연구팀은 무기물 반도체를 이용하는 양자점 태양전지의 일부 소재를 ‘유기 고분자’로 바꿔 ‘정공’ 전달 능력을 높였다. 태양전지는 태양광을 흡수한 물질(광활성층)이 전자(electron)과 정공(hole)을 만드는 성질을 이용한다. 전자가 광활성층에서 빠져나오면, 전자가 빠진 자리에는 마치 구멍이 생기듯 정공이 생긴다. 이때 전자와 정공이 각각 태양전지의 음극과 양극으로 이동하여 전력 생산으로 이어지는 것이다. 따라서 태양전지의 효율을 높이려면 전자-정공 쌍이 많아지고, 이들이 전극으로 잘 운반돼야 한다. 공동연구팀은 정공을 더 잘 뽑아내고 운반할 수 있도록 양자점 태양전지의 한쪽을 ‘유기 고
[첨단 헬로티] 양자점을 활용한 태양전지는 현재 상용화된 실리콘 전지보다 유연하고 가벼울 뿐만 아니라, 제조공정이 간단하다는 장점이 있다. 이러한 양자점 태양전지에 다른 유기물을 더해 성능을 극대화한 기술이 나왔다. 장성연 UNIST 에너지 및 화학공학부 교수팀은 무기나노소재인 ‘양자점(Quantum Dot)’과 ‘유기 고분자 소재’를 하나의 태양전지에 접합한 ‘양자점·유기물 하이브리드 탠덤 태양전지 하이브리드’를 개발했다. ▲ 장성연 교수(사진중앙)와 1저자인 하피드아코마 연구원(좌측 두번째) <사진 : UNIST> 유기 고분자 소재가 양자점이 잘 흡수하지 못하는 태양광 영역을 대신 흡수해, 전체 태양광 흡수를 극대화하고 전지의 효율도 높인 기술이다. 양자점은 반도체를 아주 작게 만든 물질이다. 입자 크기가 매우 작아지면서 나타나는 특이한 현상 덕분에 전지가 흡수하는 태양광 영역을 자유자재로 바꿀 수 있다. 따라서 다른 광활성층 광활성층: 태양광을 받아 전자의 흐름을 만들어내는 부분으로, 결정질 실리콘과 유기 고분자, 페로브스카이트 등의 물질이 사용된다. 기존에는 주로