KAIST는 전기및전자공학부 김준모 교수 연구팀이 변환 레이블(transformational labels) 없이도 스스로 변환 민감 특징을 학습할 수 있는 새로운 시각 인공지능 모델 ‘STL(Self-supervised Transformation Learning)’을 개발했다고 13일 밝혔다. 연구팀이 개발한 시각 인공지능 모델 STL은 스스로 이미지의 변환을 학습, 이미지 변환의 종류를 인간이 직접 알려주면서 학습하는 기존 방법들보다 높은 시각 정보 이해 능력을 보였다. 특히 기존 방법론들을 통해 학습한 모델이 이해할 수 없는 세부적인 특징까지도 학습하여 기존 방법 대비 최대 42% 우수한 성능을 보였다. 컴퓨터 비전에서 이미지 변환을 통한 데이터 증강을 활용해 강건한 시각 표현을 학습하는 방식은 일반화 능력을 갖추는 데 효과적이지만, 변환에 따른 시각적 세부 사항을 무시하는 경향이 있어 범용 시각 인공지능 모델로서 한계가 있다. 연구팀이 제안한 STL은 변환 라벨 없이 변환 정보를 학습할 수 있도록 설계된 새로운 학습 기법으로, 라벨 없이 변환 민감 특징을 학습할 수 있다. 또한 기존 학습 방법 대비 학습 복잡도를 유지한 채로 효율적인 최적화할 수 있는
애피어(Appier)가 세계 최고 권위의 AI 학회인 신경정보처리시스템학회(NeurIPS)와 자연어처리방법론학회(EMNLP)에 자사 AI 연구팀의 논문 3편이 모두 채택되는 쾌거를 이뤘다고 17일 밝혔다. 에피어 관계자는 “이번 성과는 애피어의 뛰어난 AI 연구 역량, 특히 대규모 언어 모델(LLM) 개발 분야에서의 기술력을 입증하는 것”이라며 “첨단 기술 및 혁신에서 애피어의 리더십을 더욱 공고히 했다”고 강조했다. 애피어는 AI 혁신과 학술적 협력에 대한 지속적인 노력의 일환으로 기술적 역량을 더욱 강화하기 위해 지난 2월 전담 AI 연구팀을 신설했다. 세계적으로 인정받는 학술 포럼에서 연구 성과를 발표함으로써 애피어만의 넓은 전문성을 지속적으로 입증하고 있다. 특히 올해 NeurIPS와 EMNLP에 제출한 모든 논문이 채택된 소수의 아시아 기반 기업 중 하나로 이름을 올려, AI와 자연어 처리(NLP) 분야에서의 우수성과 리더십을 국제적으로 인정받았다. 이번 연구 결과는 광고, 개인화, 데이터 클라우드 SaaS 플랫폼 등 애피어의 전 제품군에 적용될 예정이다. 주요 적용 사례로는 ▲광고 크리에이티브 생성 및 성능 최적화 ▲놀리지 봇(Knowledge b