식물의 생산 현장에서는 재배하는 식물의 성장 상태나 재배 환경의 계측 정보를 바탕으로 최적의 재배 관리를 하는 정밀 농업(Precision Farming)이나 스마트 농업(Smart Agriculture)이라고 불리는 새로운 농업 스타일이 최근 제창되고 있으며, 농업을 둘러싼 세계에 변화가 일어나고 있다. 이 새로운 농업 스타일은 재배 식물이 가진 기능이나 특징, 재배 환경에 관한 정보를 수집하고 이를 분석해 최적의 생산 방법을 탐색함으로써 가장 효율적인 재배를 실현하는 것을 목표로 한다. 이를 위해 식물의 정보와 재배 환경에 대한 정보를 가능한 한 많이, 상세하게 계측하고 수집한 정보를 적절하게 분석하는 정보 해석 기술이 기술 개발의 중요한 요소 중 하나이다. 한편 식물은 스스로 이동할 수 없기 때문에 자신이 처한 환경에 적용해 생존할 필요가 있으며, 여러 가지 환경 변화에 대응하는 기능을 가지고 있다. 그래서 게놈이나 유전자 정보를 조사해 환경에 적응하는 기능을 해명하는 연구가 추진되고 있다. 그러나 해석에 필요한 게놈 해석 기술이 비약적으로 진보하고 있는 한편, 게놈이나 유전자 정보와 비교하기 위해 필요한 식물의 성장 상태 계측을 고정도로 대량 취득하는
[첨단 헬로티] 아마노 아키라 (天野 啓) 東芝기계(주) 비구면 렌즈를 비롯한 광학 부품의 양산 기술은 디지털카메라, 스마트폰, 액정 디스플레이 등 민생용 기기의 수요 확대에 힘입어, 시대의 요구에 대응하는 형태로 발전해 왔다. 양산 기술의 핵이 되는 금형 제작도 절삭이나 연삭 등 고전적인 기계가공법이 제품 요구에 대응해 고도화 되고, 초정밀 절삭이나 초정밀 연삭이라고 불리는 기계가공 기술에 의해 진보해왔다. 이 기술은 1960년대에 미국을 중심으로 이루어진 고정도 가공기와 다이아몬드 공구에 의한 경면 절삭가공 기술의 개발을 원류로 하고 있다. 일본에서는 회전축에 공기정압 베어링을 탑재한 가공기의 개발을 계기로 1980년쯤부터 상용화됐다. 공기정압 베어링이란 공기압을 이용해 회전축을 비접촉으로 지지하는 방식의 베어링으로, 비접촉 구조이기 때문에 마찰계수가 매우 작고 고속 회전 시에도 진동을 발생시키지 않는 요소 기술이다. 초정밀 절삭 기술은 개발 당초에는 금형 용도가 아니라, 레이저 발진기용 금속 미러 등의 기본 형상 경면 다듬질에 적용됐는데, 1980년대 중반의 광디스크 출현과 함께 등장한 플라스틱제 비구면 렌즈가 계기가 되어 이후 금형 제작에 필요한 가공