국내 연구진이 필름 형태 전해질을 쭉 잡아당기는 간단한 공정만으로 폭발 없는 배터리인 전고체 배터리의 수명을 늘렸다. UNIST 에너지화학공학과 강석주 교수와 숙명여자대학교 주세훈 교수 공동연구팀은 오래가는 전고체 배터리를 만들 수 있는 필름형 전해질을 새롭게 개발했다고 17일 밝혔다. 전해질은 배터리 음극과 양극 사이에서 리튬이온이 오가는 통로 역할을 하는 소재다. 현재 상용 전기차나 대용량 에너지저장장치 배터리의 경우 전해질로 인화성 액체를 쓴다. 이를 고체로 바꾼 고분자 전고체 배터리는 폭발과 화재 위험은 낮지만, 리튬이온 이동성이 떨어지는 탓에 충·방전을 반복할수록 용량이 줄어드는 문제가 있었다. 연구팀은 리튬이온 이동성을 크게 개선한 불소계 고분자(PVDF-TrFE-CFE) 기반 필름형 전해질을 개발했다. 필름형 전해질을 한 방향으로 잡아당기는 일축 연신 공정 덕분이다. 연신공정이 내부의 구불구불한 고분자 사슬을 쭉 풀어줘 리튬이온이 이동하는 통로를 열어주는 원리다. 또 고분자에 배합된 세라믹 가루(LLZTO)가 기계적 유연성과 난연성을 보완하고 이온 전도도를 높인다. 실험 결과, 연신공정을 거친 순수 고분자 전해질의 리튬이온 확산속도는 연신공정을
DGIST 에너지공학과 이주혁 교수팀이 금오공과대학교 이원호 교수팀과 공동으로 마찰대전 발전 소재의 핵심 성질인 ‘극성(極性)’을 정밀하게 제어할 수 있는 새로운 설계 전략을 세계 최초로 제시했다. 이번 연구는 고분자 전해질(polymer electrolytes)을 활용해 극성 방향을 구조적으로 조절하고, 장기 내구성까지 향상시킨 것이 핵심이다. 마찰대전 발전 기술은 마찰을 통해 전기를 생산하는 방식으로, 배터리 없이도 전력을 만들어낼 수 있어 친환경 에너지 하베스팅 기술로 주목받고 있다. 하지만 기존의 이온성 액체 기반 소재는 누액, 환경 불안정성, 내구성 저하 등으로 인해 상용화에 한계가 있었다. 연구팀은 이 문제를 해결하기 위해 이온이 고분자 사슬에 고정된 형태의 ‘고분자 전해질’을 새롭게 설계하고, 이를 이용해 마찰대전 극성을 원하는 방향으로 조절할 수 있는 플랫폼 개념을 제안했다. 이 접근법은 출력 향상뿐만 아니라 소재 설계의 유연성까지 확보했다는 점에서 의미가 크다. 실험 결과, 양이온성을 가진 고분자 전해질 P(MA-A⁺20)TFSI⁻는 기존 소재(PMA) 대비 약 2배 높은 83V의 출력을 기록했고, 음이온성을 가진 P(S-S⁻10)Na⁺는 기
인하대학교는 최우혁 고분자공학과 교수 연구팀이 부산대학교 김채빈 응용화학공학부 교수 연구팀과 공동 연구를 통해 재활용이 가능한 차세대 친환경 고분자 전해질을 개발했다고 16일 밝혔다. 차세대 전지의 핵심 소재인 고체 고분자 전해질은 높은 이온 전도성과 기계적 안정성을 모두 갖춰야 한다. 그러나 기존 열경화성 고분자는 한 번 굳으면 다시 가공하거나 재활용할 수 없어 환경 부담과 비용 문제가 있었다. 연구팀은 이를 해결하기 위해 동적 공유결합(CAN·covalent adaptable network)에 주목했다. 이 결합은 필요할 때 끊어지거나 다시 형성될 수 있어 재활용과 재가공이 가능하다. 해외에서 전자재료와 구조용 소재에는 적용 사례가 있었지만, 전해질로서 강한 접착력·기계적 탄성·이온 전도성을 동시에 확보한 경우는 드물었다. 특히 기존 연구에서 문제가 됐던 촉매 필요성과 물성·재활용성 간 충돌을 해결했다. 연구팀은 촉매가 필요 없는 동적 공유결합 기반 고분자 전해질을 설계해 사용 후 재활용과 리튬염 회수를 동시에 실현할 수 있는 소재를 선보였다. 연구는 β-아미노에스터 기반의 가역적 결합을 도입해 전지 구동 중에는 안정성을 유지하면서, 필요 시 가열을 통해