김성진 대표, 마크베이스 우리는 이미 4차 산업혁명의 중심에 서 있다. 많은 이들에게 회자되는 스마트 시티나 스마트 팩토리 등 우리 삶을 혁신적으로 바꾸고 있는 스마트-X 산업은 IoT 데이터 폭증이라는 또 다른 도전을 우리에게 던져주고 있는 상황이다. 이러한 문제를 해결하기 위해 탄생한 마크베이스의 시계열 데이터베이스(TSDB)는 지난 2019년 이후 3년 연속 국제성능평가협회인 TPC에서 IoT 부문 1위를 매년 갱신하면서 IoT 데이터 처리의 세계 최강자임을 증명해오고 있다. 이 글에서는 지구상의 다양한 산업계 중에서도 가장 많은 IoT 데이터를 생산해 내는 반도체 분야의 대규모 데이터 실시간 처리 기술을 통해, 상상을 넘어선 그 성능이 어디까지 도달했는지에 대한 성과를 생생하게 확인할 수 있다. 폭증하고 있는 IoT 데이터의 처리에 대한 고민과 더불어 이에 대한 새로운 해결책을 찾는 분들께 희망찬 소식이 될 수 있기를 희망한다. Smart-X 시대 : IoT 데이터의 폭발적 증가 1. 데이터 증가 원인 우리는 현재 IoT 센서 데이터를 분석해 인공지능(AI)을 이용하는 시대에 살고 있다. IoT 센서 데이터란 온도, 습도, 전류, 전압, 진동과 같이
헬로티 이동재 기자 | 제조설비 예지보전은 최근 PHM(Prognostics and Health Management)이라는 보다 큰 의미의 용어로 불리고 있으며, 설비 이상에 대한 사전 진단 및 설비, 부품 등의 수명을 예측해 최적의 설비상태를 유지하는 것을 뜻한다. 이를 통해 제조업은 품질 향상과 납기를 준수하게 되어 경쟁력을 강화하고, 빅데이터 분석(AI, 통계)을 토대로 객관적인 근거를 바탕으로 공장의 다운타임을 줄이는 동시에 실질적인 비용손실을 감소시키는 효과를 가져온다. 통상적으로 PHM의 실행은 정보 수집, 이상 탐지, 상태 진단, 고장 예측 등의 네 단계를 거친다. 예지보전을 잘하기 위해서는 단순히 특정 영역뿐 아니라, 데이터의 발생 시점부터 데이터가 분석되는 시점까지의 데이터 고속도로가 필요하다. AIoT 관점에서 예지보전 기술의 핵심은 AI에 있다기보다는 얼마나 데이터를 효율적으로 처리하느냐에 있기 때문이다. 보통의 AI 모듈은 데이터소스를 파일이나 메모리에서 가져오지만, 마크베이스의 AIoT Suite는 추론 데이터소스를 DBMS에서 실시간으로 전송해 데이터 변환에 드는 불필요한 비용을 줄인다. 또 Edge computing 솔루션과 연계해
헬로티 함수미 기자 | 4차 산업혁명 시대에 주도권을 확보하기 위해 AI, IoT 기술을 응용한 원격제어, 제조 자동화 등을 구축하고 있는 현장이 늘어나고 있다. 초당 수백만 건의 데이터가 쏟아져 나오는데, 데이터베이스를 구축하고 활용하기가 쉽지 않다. 실제로 현장에서는 DB 관련 해프닝이 끊이지 않는다. 마크베이스는 '완벽한 AIoT 구현을 위한 TSDB의 도입과 사례' 리포트를 통해 시계열 데이터베이스(TSDB : Time Series Database)를 소개한다. 이번 리포트는 ▲DB 히스토리 ▲AIoT가 원하는 DB의 조건 ▲주요 DB 성능 비교 ▲TSDB 도입을 위한 준비 ▲주요 TSDB 종류 ▲응용사례를 중심으로 소개하며 다양한 산업 영역에서 본격화 되고 있는 AIoT 기술 관련 올바른 DB의 선택과 도입에 도움을 준다.