한국과학기술원(KAIST)은 강진영·이원희 교수 공동 연구팀이 극히 짧은 시간 동안 일어나는 생명체의 단백질 반응을 분석할 수 있는 시간 분해 초저온 전자현미경 기법을 개발했다고 24일 밝혔다. 생명현상과 신약 개발 연구 분야에서 ㎲(마이크로초·100만 분의 1초)∼ms(밀리초·1000분의 1초) 단위에서 일어나는 단백질 반응 분석을 위해 시간 분해 초저온 전자현미경(TRCEM·Time-resolved cryo-electron microscopy) 기술이 주목받고 있다. TRCEM은 단백질 반응체의 중간 상태를 초저온으로 급속 냉동해 구조를 분석하는 기술이다. 다만 시료가 많이 들고 최소 시간 반응이 10ms 이상 걸려 극히 짧은 시간 동안만 존재하는 중간체를 포착하기 어려웠다. 연구팀은 수 ㎛(마이크로미터·100만분의 1m) 두께의 얇은 박막 형태의 소재인 패럴린을 이용해 미세유체 혼합-분사 장치 방식의 TRCEM 기법을 개발했다. 미세유체 채널 안에서 시료를 혼합한 뒤 분사·냉각해 관찰하는 방식으로, 패럴린을 이용해 기존보다 더 얇고 단순한 구조를 구현함으로써 시료 소모량을 기존의 3분의 1 수준으로 줄였다. 특히 미세유체 소자 내에서 반응 시작 전 시료
머리카락 두께의 수만 분의 1도 관찰할 수 있는 초정밀 현미경으로 특수 전자소자를 측정할 때 발생하던 오차의 원인이 밝혀졌다. 한미 공동 연구진이 그동안 측정 대상 물질의 특성으로 여겨졌던 오차가, 실제로는 현미경 탐침 끝부분과 물질 표면 사이의 극미세 공간 때문이라는 사실을 밝혀낸 것이다. KAIS는 신소재공학과 홍승범 교수 연구팀이 미국 버클리 대학 레인 마틴 교수팀과의 국제 공동연구를 통해, 주사탐침현미경 측정의 최대 난제였던 신호 정확도를 저해하는 핵심 요인을 규명하고 이를 제어하는 획기적인 방법을 개발했다고 18일 밝혔다. 연구팀은 현미경 탐침과 시료 표면 사이에 존재하는 비접촉 유전 간극이 측정 오차의 주요 원인임을 밝혀냈다. 이 간극은 측정환경에서 쉽게 변조되거나 오염물질로 채워져 있어 전기적 측정에 큰 영향을 미치는 것으로 나타났다. 이에 연구진은 물과 같은 고유전율 유체를 이용해 이 간극을 채우는 방법을 고안해 나노스케일 분극 전환 전압 측정의 정밀도를 8배 이상 향상했다. 이러한 접근은 기존의 대칭 커패시터 구조에서 얻은 결과와 거의 일치하는 값을 얻을 수 있어 강유전체 박막의 특성 분석에 새로운 장을 열 것으로 기대되고 있다. 특히 연구진
한국과학기술원(KAIST) 기계공학과 박인규·김산하 교수, 고려대 세종캠퍼스 안준성 교수, 한국기계연구원 정준호 박사 공동 연구팀은 신소재인 탄소나노튜브 표면을 높은 정밀도로 균일하게 가공하는 데 성공했다고 8일 밝혔다. 속이 빈 원기둥 모양 탄소 소재인 탄소나노튜브는 전기 전도도가 높고, 강철보다 기계적 강도가 강해 반도체·센서, 군수산업 등 다양한 분야의 차세대 신소재로 주목받고 있다. 다만 제한적인 기계적 탄성과 낮은 반응성 때문에 탄소나노튜브 표면에 금속·세라믹 등 기능성 소재를 붙여 사용하는데, 탄소나노튜브의 높은 응집률 때문에 균일하게 코팅하기가 쉽지 않았다. 연구팀은 정교하게 제작된 금속산화물 나노구조체를 전사할 수 있는 나노 임프린팅 공정을 개발, 나노 패턴화된 탄소나노튜브를 구현한 뒤 세라믹 원자층을 균일하게 코팅하는 데 성공했다. 전자빔 증착법 등 물리적 증착 방식의 경우 상단에만 금속이 머물러 있는 것에 반해, 나노 패턴화된 탄소나노튜브는 내부까지 금속이 증착된 것으로 확인됐다. 박인규 KAIST 교수는 “개발된 수직 정렬 탄소나노튜브의 나노패턴화 공정은 탄소나노튜브 기능성 코팅 응용에 있어 본질적인 문제인 낮은 원자 침투성을 해결할 수