한국과학기술원(KAIST) 이상엽 특훈교수 연구팀은 차세대 플라스틱 소재인 폴리에스터 아마이드를 생산할 수 있는 미생물 균주를 개발했다고 20일 밝혔다. 폴리에스터 아마이드는 일반적으로 많이 사용되는 PET(폴리에스터)와 나일론(폴리아마이드)의 장점을 모두 갖춘 차세대 소재로, 화석 연료에서만 생산할 수 있어 환경이 오염될 우려가 있다. 연구팀은 자연계에 존재하지 않는 새로운 미생물 대사회로를 설계해 9종의 다른 폴리에스터 아마이드를 생산할 수 있는 플랫폼 미생물 균주를 개발했다. 폐목재나 잡초 등 바이오매스에서 생산된 포도당을 에너지원으로 사용해 폴리에스터 아마이드를 친환경적으로 생산할 수 있다. 연구팀이 한국화학연구원 정해민·신지훈 연구원과 함께 개발한 플라스틱의 물성을 분석한 결과, 친환경 소재인 고밀도폴리에틸렌(HDPE)과 유사한 성질을 가진 것으로 나타났다. 친환경적이면서도 기존 플라스틱을 대체할 수 있을 만큼 강도와 내구성이 뛰어나다고 연구팀은 설명했다. 이상엽 특훈교수는 “석유화학 산업에 의존하지 않고도 바이오 기반 화학 산업을 통해 폴리에스터 아마이드를 만들 수 있는 가능성을 처음으로 제시했다”며 “생산량과 생산성을 더 높이기 위한 후속 연구를
[첨단 헬로티 = 김동원 기자] 김동혁 UNIST 에너지 및 화학공학부 교수 연구팀은 조병관 KAIST 생명과학과 교수 연구팀과 함께 미생물이 C1 가스(이산화탄소, 일산화탄소 등 단일 탄소로 이뤄진 가스)를 활용하는 새로운 대사회로 메커니즘을 규명했다. 연구팀이 규명한 새 대사회로는 현재까지 알려진 관련 대사회로 중 가장 우수한 효율을 갖고 있어 향후 C1 가스를 고부가가치 생화학물질로 전환하는 산업적 응용에 활용 가능할 것으로 기대된다. ▲ 김동혁 교수팀은 KAIST 조병관 교수 연구팀과 공동으로 아세토젠 미생물의 새로운 C1가스 대사회로를 규명했다. (사진 : UNIST) KAIST 조병관 교수와 김동혁 교수 공동 연구팀이 수행하고 KAIST 송요셉 박사가 1 저자로 참여한 이번 연구결과는 국제 학술지 미국국립과학원회보(PNAS) 3월 13일 자 온라인판에 게재됐다. 현재까지 자연계에 알려진 C1 가스를 유기물로 전환하는 대사회로는 총 6개이며, 대표적인 예로 식물의 광합성을 들 수 있다. 그중 미생물인 아세토젠 내에서 발견되는 우드-융달 대사회로는 C1 가스의 흡수 대사회로 중 가장 효율적인 회로로 알려져 있다. 특히 아세토젠은 다양한 환경에서 서식할
[첨단 헬로티] 한국과학기술원(KAIST) 생명화학공학과 이상엽 교수 연구팀이 최근 친환경 바이오매스를 활용하여 플라스틱을 생산하는 기술과 폐플라스틱을 재활용할 수 있는 기술을 각각 개발했다고 과학기술정보통신부는 밝혔다. 기후 변화 문제가 심각해짐에 따라 국제적으로 ‘지속 가능한 친환경 화학 산업을 위한 연구개발(R&D)’이 활발한 가운데, 두 연구 성과는 미생물 발효를 통해 방향족 폴리에스테르를 생산하는 기술을 세계 최초로 개발하고, 더 나아가 기존 플라스틱을 재활용하여 친환경 플라스틱을 생산할 수 있는 가능성을 제시하였다는 점에서 의미가 있다. 고분자인 방향족 폴리에스테르는 원유로부터 복잡한 공정을 거쳐야 얻을 수 있기 때문에 친환경적이지 않다. 그렇지만, 페트병 생산의 원료로서 우리 생활에 필수적인 물질이다. 한국과학기술원 이상엽 교수 연구팀과 이화여대 박시재 교수 연구팀은 공동 연구를 통해 개량된 대장균을 직접 발효하여 비식용 바이오매스로부터 방향족 폴리에스테르를 생산할 수 있는 친환경 원천기술을 세계 최초로 개발했다. 연구팀은 컴퓨터 기반 가상세포를 이용한 대장균 균주의 대사흐름분석기술을 적용한 시스템 대사공학기법을 활용