KAIST, 추론속도 최대 100배 빠른 AI 확산모델 신기술 개발

2025.07.21 09:22:16

이창현 기자 atided@hellot.net

 

한국과학기술원(KAIST)은 전산학부 안성진 교수팀이 딥러닝 분야 석학인 캐나다 몬트리올대 요슈아 벤지오 교수와 인공지능(AI) 확산모델(diffusion model)의 추론-시간 확장성을 크게 개선하는 신기술을 개발했다고 20일 밝혔다.

 

확산모델은 많은 AI 응용에 활용되고 있지만, 효율적인 추론-시간 확장에 대한 연구가 부족했다. 이 기술은 인공지능 학습 이후 추론 단계에서 더 많은 계산 자원을 효율적으로 활용, 단순히 데이터나 모델 크기를 키우는 것으로는 해결할 수 없는 고난도 문제를 풀 수 있도록 돕는 핵심 AI 기술로 주목받는다.

 

안 교수 공동 연구팀은 몬테카를로 트리 탐색(Monte Carlo Tree Search) 기반 새로운 확산모델 추론기법을 제안했다. 이 방법은 확산 과정 중 다양한 생성 경로를 트리 구조로 탐색하며, 제한된 계산 자원으로도 높은 품질의 출력을 효율적으로 찾아낼 수 있도록 설계됐다.

 

 

이를 통해 기존 모델(방법)이 한 번도 성공하지 못한 ‘자이언트-스케일의 미로 찾기’ 태스크에서 100% 성공률을 달성했다. 특히 트리 탐색을 효율적으로 병렬화해 비용을 최적화함으로써 기존 방법보다 최대 100배 빠른 속도를 얻는 데 성공했다.

 

향후 지능형 로봇, 실시간 생성 AI 등 실시간 의사결정이 요구되는 다양한 분야의 핵심 기술로 활용될 수 있을 것으로 연구팀은 기대했다. 안성진 교수는 “이번 연구는 고비용 계산이 요구되던 기존 확산 모델의 한계를 근본적으로 극복한 기술”이라고 말했다.

 

 

한편 전산학부 윤재식 박사과정이 제1저자인 이번 연구 결과는 캐나다 밴쿠버에서 열린 ‘제42회 국제기계학습학회’에 스포트라이트(Spotlight) 논문으로 발표됐다.

 

헬로티 이창현 기자 |

Copyright ⓒ 첨단 & Hellot.net





상호명(명칭) : (주)첨단 | 등록번호 : 서울,자00420 | 등록일자 : 2013년05월15일 | 제호 :헬로티(helloT) | 발행인 : 이종춘 | 편집인 : 김진희 | 본점 : 서울시 마포구 양화로 127, 3층, 지점 : 경기도 파주시 심학산로 10, 3층 | 발행일자 : 2012년 4월1일 | 청소년보호책임자 : 김유활 | 대표이사 : 이준원 | 사업자등록번호 : 118-81-03520 | 전화 : 02-3142-4151 | 팩스 : 02-338-3453 | 통신판매번호 : 제 2013-서울마포-1032호 copyright(c) HelloT all right reserved.